If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+14x-41=0
a = 4; b = 14; c = -41;
Δ = b2-4ac
Δ = 142-4·4·(-41)
Δ = 852
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{852}=\sqrt{4*213}=\sqrt{4}*\sqrt{213}=2\sqrt{213}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{213}}{2*4}=\frac{-14-2\sqrt{213}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{213}}{2*4}=\frac{-14+2\sqrt{213}}{8} $
| 6(z+5)=-8(2z-19) | | 3x+25-9=(x+2) | | -2=b+4+2b | | 3/4=6/f | | 3x-15=9x+21 | | 7+2n=8-5 | | 3(3z+10)=3 | | -12=8x-6+2 | | (x)=5(x-9)-4x=6 | | –10−4q=–9q | | g(10)=10-7 | | -4(3y-1)=(10-2y)-36 | | 4+49x^2=0 | | 8=9t=21t-17 | | -4p+7=-2(4p-4)-9(-7-4p) | | 8=5+4x+7 | | .4d=-21-d | | 2(5x-12)+(2x+3)=180 | | 2.3x=0.075-x | | –6+2f=8f | | 2(5x-12)+2x+3=180 | | 20x-5=15x+6 | | 20x-5=15x+ | | 9=-7x-2x | | 4x+2.2=6x+4.4 | | -8=1+7n-4n | | -5(-7x-6)=10(x-2) | | -24=3(1+r) | | 5x-74x=8 | | 2(7x-5)=12x-26 | | T(-x-5)=-56x+49 | | 5(-x+5)=-56x+49 |